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ABSTRACT

The base attitude of a free floating space robot may
change while performing a motion with its manipulator.
This dynamic coupling complicates the motion planning
of the space robot and must be taken into account in order
to reach a target point with a desired end-effector pose.
However, the free floating mode is useful, because of its
energy efficiency, and with proper motion planning, its
adequacy for smooth motions with minimized base dis-
turbance. In this paper we propose a motion planning
algorithm to steer the end-effector of a free floating space
robot to a target pose with minimized base disturbance.
The joint position and velocity limits are respected. The
approach is based on the Reaction Null-Space and the
Constrained Particle Swarm Optimization. Simulation
results show the effectiveness of the planning method ap-
plied to a seven Degrees of Freedom manipulator.

Key words: Free Floating Space Robot; Motion Plan-
ning; Reactionless Maneuver; Constrained Particle
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1. INTRODUCTION

Space robots are expected to perform various tasks in fu-
ture on-orbit servicing activities. Some of these may in-
clude the inspection of malfunctioning satellite devices,
the repair and the refueling of satellites to extend their
mission life as well as their capture and de-orbiting at
their end-of-life.

The maneuvers and dynamic interactions between the
space robot (chaser) and the satellite (target) involved in
a capture task depend on multiple factors such as their
proximity and their behaviour before and after docking
attemps. For this reason, the capture may be divided into
four phases [1]-[2]:

• Free flying approach phase: The chaser moves from
its home orbit into the target orbit. After a status
inspection, it approaches the target further with help
of proximity sensors and small jet firings.

• Free floating approach phase: The thrusters are
turned off. The base is permitted to translate and
rotate in response to the manipulator motion. The
chaser moves its end-effector toward the grasping
point on the target in a smooth and accurate man-
ner.

• Impact phase: The contact between the mani-
pulator and the target is established. This results in
an impact, which may cause a rebound.

• Post impact phase: The impact phase may be fol-
lowed by disturbances such as attitude drift or com-
ponents deformation.

The dynamic coupling between the base and the manipu-
lator during the free floating approach phase has been
well studied [3]. Without proper motion planning, it
can cause the end-effector to miss the grasping point.
In the absence of external forces and torques acting on
the chaser, its linear and angular momentums are con-
served. While the linear momentum conservation equa-
tions can be integrated (holonomic constraints), the angu-
lar momentum conservation equations cannot (nonholo-
nomic constraints) (see [3] p. 174). Further, it has been

Figure 1. The simulation model. The free floating chaser
(rhs) with minimized base disturbance moving its mani-
pulator toward the target (lhs).



shown that in the case of zero momentum, the trajectory
of the base attitude is dependent on the joint trajectory
[4]. This means that for the same initial and final end-
effector pose, the latter may be reached with different
base attitudes depending on the path taken in the joint
space. This result has been used by many authors to plan
the motion of free floating space robots by using a poly-
nomial joint trajectory to reach an end-effector pose with
a desired base attitude (see [5] and references therein).
With this approach, however, the base is subject to strong
attitude disturbances during the entire motion. This could
lead to a collision with the target or to communication
pertubations while teleoperating [6].

To avoid collision with the target or for communication
purposes, the attitude of the base has to be kept nearly
constant in the free floating approach. In [7] the Reac-
tion Null-Space (RNS) is used to characterize the joint
velocity which locally minimizes the base reaction. Al-
though this velocity is well defined, only [8], as far as
we know, has addressed the generation of corresponding
trajectories. The authors partition the joints into sets of
redundancy one and then take advantage of the integra-
bility of a one-dimensional distribution included into the
distribution generated by the RNS basis to plan reaction-
less motions.

In this work we use polynomial time varying input fac-
tors to formulate the feasible (reactionless) joint velocity
as linear combination of the basis vectors of the RNS.
We then optimize the input parameters to steer the end-
effector to a desired pose. The velocity profile parame-
terization allows the manipulator to be at rest at the be-
ginning and at the end of the motion. The joint velocity
limits are satisfied through a scaling factor. The Con-
strained Particle Swarm Optimization (C-PSO) with joint
position limits as constraints is used to solve the motion
planning problem.

The paper is organized as follows: Section 2 gives a brief
introduction of the concept of reactionless motions from
[7]. Feasible joint trajectories and their parameterization
are formulated in section 3 and 4, respectively. The C-
PSO algorithm is shortly presented in section 4 and, in
addition, the problem of stagnation is addressed. The
simulation results are shown in section 5. Finally, Sec-
tion 6 is for conclusion.

2. REACTIONLESS MOTIONS

The angular momentumL of the chaser with a N Degrees
of Freedom manipulator can be expressed as [7]:

L = H̃bw0 + H̃bmq̇ (1)

The terms H̃bw0 and H̃bmq̇ represent the angular mo-
mentum of the base and the coupling angular momentum
between the base and the manipulator, respectively. The
vector w0 ∈ R3 is the base angular velocity and the vec-
tor q ∈ RN contains the joint configuration values.

Assuming that the chaser is at rest at the beginning of the
manipulator motion, it follows L = 0 ∈ R3. H̃b is a
always invertible. Hence, if H̃bmq̇ = 0 ∈ R3 during the
manipulator motion, the attitude of the base will remain
constant (w0 = 0). It follows that for

H̃bm(t)q̇(t) = 0, 0 ≤ t ≤ tf (2)

the attitude of the chaser is kept constant during the ma-
nipulator motion of length tf .

The matrix H̃bm depends on the dynamic properties
(mass, inertia tensor) of the chaser and its configuration
q. In the absence of external forces, as in our case, it does
not depend on the base attitude [8].

3. FEASIBLE TRAJECTORIES

The kind of restriction on the velocity profile as in (2) is
called pfaffian constraints [11]. It is transformed in this
section into the general expression of joint velocity pro-
files which do not disturb the base.

It is obvious that each solution q̇(t) of (2) must lie in the
current right null spaceNH̃bm

(t) of H̃bm(t). The singular
value decomposition of H̃bm(t) provides an explicit way
to extract a basis of NH̃bm

(t) in the sense that the singu-
lar vectors corresponding to the vanishing singular val-
ues spanNH̃bm

(t). Assuming that H̃bm(t) does not loose
rank, a basis of NH̃bm

(t) is of dimension k = N − 3. It
is worth noting that during the motion of the manipulator,
the basis vectors ofNH̃bm

(t) are always dependent on the
current dynamic properties of the chaser because H̃bm(t)
is too.

In the rest of this paper, we use the set
Bknsb(t) = {q̇nsb1 (t), · · · , q̇nsbk (t)} to refer to a ba-
sis of NH̃bm(t)having k basis vectors q̇nsbi (t) with
i ∈ {1, 2, · · · k}. In [7], Bknsb(t) is called the RNS. Every
linear combination

q̇(t) = α1(t)q̇nsb1 (t) + · · ·+ αk(t)q̇nsbk (t) (3)

of these basis vectors, where αi(t) ∈ R, is also a solution
of (2).

The right hand side of (3) represents the joint velocity
profiles enabling the manipulator to move without dis-
turbing the base attitude.

4. TRAJECTORIES PARAMETERIZATION

The joints velocity are parameterized as follows:

q̇(t) =
1

g
(

β1(t)

||q̇nsb1 (t)||
q̇nsb1 (t) + · · ·+ βk(t)

||q̇nsbk (t)||
q̇nsbk (t))

(4)



with the real number g 6= 0 and

βi(t) = ait
n+2 + bit

n+1 + cit
n, (5)

n ∈ {1, 2, 3, · · · }, ai 6= 0.

According to (3)

αi(t) =
βi(t)

g||q̇nsbi (t)||
. (6)

Furthermore, the following constraints have to be res-
pected:

q̇(t = 0) = q̇(t = tf ) = 0, (7)
qmin ≤ q(t) ≤ qmax, (8)
|q̇(t)| ≤ q̇max. (9)

The first constraint (7) is satisfied if
βi(t = 0) = βi(t = tf ) = 0, that is

ci = −(ait
2
f + bitf ). (10)

βi is continuous on the closed bounded interval D =
[0, tf ]. Therefore, βi attains its maximum and minimum
on D. Next we are looking for t̂ which maximizes |βi(t)|
in D. After taking the time derivative β̇i of βi with

β̇i(t) = tn−1[(n+ 2)ait
2 + (n+ 1)bit+ nci], (11)

it is simple to show that for ai, bi and ci such that the
discriminant ∆ of the quadratic polynomial inside the
brackets in (11) becomes positiv, that is

∆ = ((n+ 1)bi)
2 − 4n(n+ 2)aici ≥ 0, (12)

t = t + dt
Compute
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Compute
q̇(t)

t = tf f ≤ σe

j = T m=mmax

Stop, no
solution
found!

A solution
q̇(t, η̂)
found!

j = j + 1
Initialize

(if m=1)

or update
(if m > 1)

the C-PSO

j = 1

t∫
τ=0

KJGq̇dτ

t = 0
η = ηj

start

N

Y

N

N

Y

N

Y

Y

Figure 2. The flowchart of the proposed motion planning
algorithm.

β̇i has two (∆ = 0) or three (∆ > 0) roots

ti,0 = 0 and ti,± =
−(n+ 1)bi ±

√
∆

2(n+ 2)ai
. (13)

One of the ti,± corresponding to the value βi,max =
max{|βi(t = ti,+)|, |βi(t = ti,−)|} and lying in D is
t̂. So, the constraint (9) holds if we set

g ≥ 1

q̇max

k∑
i=1

βi,max. (14)

The motion planning is thus reduced to the constrained
optimization problem of finding an optimal vector

η̂ = [a1, b1, · · · , ak, bk]T (15)

such that

f(η̂, t = tf ) = ||Xdes −X(t = tf )|| ≤ σe, (16)
qmin ≤ q(t) ≤ qmax, (17)

∆ ≥ 0, (18)

holds, with

X(t = tf ) =

[
xE
ΘE

]
=

∫ tf

t=0

Ẋdt =

∫ tf

t=0

KJGq̇(η̂, t)dt,

(19)
where σe, xE and ΘE are the accuracy threshold value,
the position and orientation components of the end-
effector pose X , respectively. The (6 × N)-matrix JG
is referred to as the generalized Jacobian Matrix [7].
K =

[
I3×3 03×3

03×3 F−1
3×3

]
with Θ̇E = F−13×3wE (see [4]). wE

is the angular velocity of the end-effector.

5. THE CONSTRAINED PARTICLE SWARM OP-
TIMIZATION

The Particle Swarm Optimization (PSO) is a stochastic
search and optimization technique that has been proven
to perform well in several optimization problems [12]. It
is inspired by the social behavior and movement dynamic
of bird swarms. Here, the particle swarm is a set of T
optimization vectors ηj with j ∈ {1, · · · , T}. The PSO
consists of maximal mmax optimization steps of the po-
sition of each ηj in the space of possible (characterized
by (18)) components of ηj . At least one of the ηj is ex-
pected to converge toward a position where (16) and (17)
hold.

The next position of ηj with the current position ηj(m)
at the m-th optimization step, m ∈ {1, · · · ,mmax}, is
determined by adding a displacement (called velocity)
νj(m+ 1):

ηj(m+ 1) =ηi(m) + νj(m+ 1) (20)

with

νj(m+ 1) =ωνj(m) + c1r1(ηj,pbest(m)− ηj(m))

+ c2r2(ηgbest(m)− ηj(m)). (21)



In (21) ηj,pbest(m) is the current personal best position
of ηj and ηgbest(m) the global best position of the entire
swarm. The weighting function ω acting on the last step
velocity can be set as

ω(m) = ωmax −m
ωmax − ωmin

mmax
(22)

to first allow a global search and with increasing opti-
mization steps, a local search can be performed. r1 and r2
are random numbers uniformly distributed in [0, 1]. The
real numbers c1 (cognitive parameter), c2 (social para-
meter) and the bounds ωmin and ωmax of ω can be chosen
in such a way that each ηj converges to an asymptotically
stable equilibrium position [10]. Note that this position is
not necessarily a solution to the given optimization pro-
blem. It is only the exchange of experiences between the
ηi which increases the convergence probability towards
an η̂ [12].

5.1. Constraints handling

The PSO does not handle constraints in its native
form. To handle constraints in this work, only feasi-
ble (The constraint (17) must be satisfied.) ηgbest(m)
are taken into account, while preserving the exploration
and exploitation behavior of the swarm. To do so,
ηgbest(m) is chosen as the best feasible ηj,pbest(m),
and the ηj,pbest(m) are updated using the concept of
”constraint domination” presented in [9]. Based on the
amount of constraint violation, this technique enables the
exploitation of ”better unfeasible” optimization vectors
to maintain the aforementioned behavior. The amount
of constraint violation function Φ(ηj) is adapted in this

Figure 3. The joint velocity profiles.

work as follows:

Φ(ηj) =

N∑
r=1

(max(0, qrηj ,max − q
r
max)

+ max(0, qrmin − qrηj ,min)) (23)

In (23), qrmax and qrmin are the maximal and minimal al-
lowed position of the r-th joint, r ∈ {1, · · · , N}, while
qrηj ,min and qrηj ,max are the encontered minimal and max-
imal position of the r-th joint, after following the trajec-
tory corresponding to ηj , respectively.

5.2. Stagnation handling

The swarm stagnates if no improvements of ηj,pbest and
ηgbest are occurring. To solve this problem we integrate
an alarm function which notifies the C-PSO algorithm
when after a fixed number of optimization steps, the mini-
mization change rate of the cost function remains lower
than a given threshold near zero. In such a case the swarm
is randomly split in two subswarms Ss,s∈{1,2} of equal
size, which are initialized as follows:

• ηj(m+ 1) = ηgbest(m) + ε1rand(0, 1), if ηj ∈ S1

to exploit the ηgbest(m) information through perfor-
ming a local search around ηgbest(m).

• ω(m + 1) = ω(m)+|ε2|rand(0, 1) if ηj ∈ S2 to
escape from the stagnation through dispersing the
subswarm.

ε1 and ε2 are two weighting scalar and rand(0, 1) is a
random number between 0 and 1.

Figure 4. The joint position profiles.



5.3. The motion planning process

The chart of the motion planning algorithm is depicted
in Fig. 2. Each optimization round begins with η1 and
ends with ηT . At the first optimization round, the whole
swarm is uniformly randomly initialized while respecting
(18). The joint trajectory corresponding to ηj is followed
until t = tf , where the discrepancy between the reached
and the desired end-effector pose is compared to σe (see
(16)). To compute this trajectory, the null space problem
(2) is solved at each discrete simulation step t = z · dt,
with z ∈ {0, 1, · · · , int( tfdt )}.

A solution for the motion planning problem is found if
for an ηj = η̂ the desired end-effector pose accuracy is
satisfied. Otherwise, if j = T , the ηj are updated ac-
cording to (20) and (21) for the next optimization round.
There is no solution if f > σe, j = T and m = mmax.

6. SIMULATION RESULTS

We have done numerical simulations to investigate
the effectiveness of the proposed motion planning
approach. As a physical model we used a seven Degree
of Freedom chaser with parameters listed in Tab. 1.
The manipulator is desired to move from the start
end-effector pose Xinit = [−0.5186, 0.2536,−0.36291,
180.0◦, 0.01◦, 179.80◦]T to the final end-effector pose
Xfinal = [−0.6034, 0.8095,−0.27442,−94.78◦, 5.10◦,
100.23◦]T . n = 1 for each joint. The joint li-
mits are set to |qi| ≤ 100◦ for i ∈ {2, 3, 4, 7} and
−280◦ ≤ qi ≤ 10◦ for i ∈ {1, 5, 6}. |q̇i| ≤ 15◦/s
is required for each joint. The PSO parameters are:

Figure 5. The end-effector trajectory.

Figure 6. The base disturbance.

T = 40, c1 = c2 = 1.49618, wmax = 0.9, wmin = 0.4
and σe = 0.05.

The synthesized profiles of the joint position,
the joint velocity and the TCP trajectory for the
optimal vector η̂ = [3.14771, 0.809316, 1.12249,
0.754006, 4.7352, 0.406031,−4.1572, 4.29895]T are de-
picted in Fig. 3, Fig. 4 and Fig. 5, respectively.
The trajectories are smooth and the manipulator starts its
motion and reaches the target pose with zero velocity.
The constraints are satisfied. Fig. 6 shows that the
base disturbance during the motion of length tf = 30s
remains lower than 0.01◦.

7. CONCLUSION

We presented and demonstrated by simulation an algo-
rithm to plan the motion of a free floating space robot
manipulator which minimizes the base disturbance and
steers the end-effector to a desired pose. Polynomial time
varying inputs were used to express the feasible veloci-
ty profile as linear combination of the RNS basis vec-
tors. The trajectories were parameterized in such a way
that the space robot is at rest at the beginning as well
as at the motion end. The motion planning was formu-
lated as an optimization problem with joint limits as con-
straints. We used the Constrained Particle Swarm Op-
timization algorithm to solve the optimization problem.
A warning function and a split-and-disperse scheme to
fix possible stagnation problems were introduced. The
presented results illustrate that it is effectively possi-
ble to reactionless steer a space robot manipulator with
polynomial time varying inputs.



Table 1. The model parameters. l (Length,m),
m (Mass,kg), I (Inertia tensor,kg.m2)

Links l m Ixx Iyy Izz
Base 1022 612.69 328.61 657.44
L1 0.113 10 0.038 0.047 0.025
L2 1.325 25 0.056 5.85 5.84
L3 0.08 5 0.009 0.017 0.017
L4 0.926 15 0.029 1.74 1.74
L5 0.08 3 0.008 0.005 0.008
L6 0.25 10 0.026 0.084 0.076
L7 0.04 3 0.0036 0.0036 0.0034
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